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Abstract. Reasoning about mixed real and floating-point constraints
is essential for developing accurate analysis tools for floating-point pro-
grams. This paper presents FPRoCK, a prototype tool for solving mixed
real and floating-point formulas. FPRoCK transforms a mixed formula
into an equi-satisfiable one over the reals. This transformed formula
is then input to different off-the-shelf SMT solvers for resolution. The
proposed tool is integrated inside the static analyzer PRECiSA, which
computes a sound estimation of the round-off error of a floating-point
program. FPRoCK is used to detect unfeasible computational paths, im-
proving the accuracy of PRECiSA.

1 Introduction

Floating-point numbers are frequently used as an approximation of real numbers
in computer programs. A round-off error originates with the difference between
a real number and its floating-point representation, and accumulates through-
out a computation. The resulting error may affect both the computed value of
arithmetic expressions, as well as the control flow of the program.

To reason about floating-point computations with possibly diverging control
flows, it is essential to solve mixed real and floating-point arithmetic constraints.
This is known to be a difficult problem. In fact, constraints that do not have
a solution over the reals may hold over the floats and vice-versa. In addition,
combining the theories is not trivial since floating-point arithmetic and real
arithmetic do not enjoy the same properties.

Modern SMT solvers such as Mathsat [3] and Z3 [10] encode floating-point
numbers with bit-vectors. This technique is usually inefficient due to the size
of the binary representation of floating-point numbers. For this reason, sev-
eral abstraction techniques have been proposed to approximate floating-point
formulas and to solve them in the theory of real numbers. Approaches based
on the Counter Example Guided Abstraction Refinement (CEGAR) framework
[2,13,17] simplify a floating-point formula and solve it in a proxy theory that
is more efficient than the original one. If a solution is found for the simplified



formula, a check on whether it is also a solution for the original formula is
performed. If the answer is yes, the solution is returned, otherwise, the proxy
theory is refined. Realizer [8] is a framework built on the top of Z3 to solve
floating-point formulas by translating them into equivalent ones in real arith-
metic. Molly [13] implements a CEGAR loop where floating-point constraints
are lifted in the proxy theory of mixed real and floating-point arithmetics. To
this aim, it uses an extension of Realizer that supports mixed real and floating-
point arithmetics. However, this extension is embedded in Molly and cannot be
used as a standalone tool. The constraint solver Colibri [9] handles the com-
bination of real and floating-point arithmetics by using disjoint floating-point
intervals and difference constraints. Unfortunately, the publicly available ver-
sion of Colibri does not provide support for all the rounding modalities and for
the negation of Boolean formulas.

This paper presents FPRoCk, a prototype solver of mixed real and floating-
point constraints. The prototype tool is in the process of being released under
NASA’s Open Source Agreement. FPRoCk extends the transformation defined
in [8] for Realizer to mixed real/floating-point constraints. Given a mixed real-
float formula, FPRoCk computes an equi-satisfiable real arithmetic formula that
can be solved by an external SMT solver. In constrast to Realizer, FPRoCk
supports mixed precision floating-point expressions and different ranges for the
input variables. This paper illustrates how FPRoCk is employed to improve
the accuracy of the static analyzer PRECiSA [15]. In particular, the proposed
tool identifies spurious execution traces whose path conditions are unsatisfiable,
allowing PRECiSA to discard them.

2 Solving mixed Real/Floating-Point Formulas

A floating-point number [7], or simply a float, can be represented by a tuple
(s,m, exp) where s is a sign bit, m is an integer called the significand (or man-
tissa), and exp is an integer exponent. A float (s,m, exp) encodes the real number
(−1)s ⋅m ⋅2exp . Henceforth, F represents the set of floating-point numbers. Let ṽ
be a floating-point number that represents a real number r . The difference ∣ṽ −r ∣
is called the round-off error (or rounding error) of ṽ with respect to r . Each
floating-point number has a format f that specify its dimensions and precision,
i.e., single or double. The expression Ff(r) denotes the floating-point number
in format f closest to r assuming a given rounding mode.

Let V and Ṽ be two disjoint sets of variables representing real and floating-
point values respectively. The sets A of mixed arithmetic expressions is defined
by the following grammar.

A ∶∶= d ∣ x ∣ d̃ ∣ x̃ ∣ A⊙A ∣ A⊙̃A ∣ Ff(A),

where d ∈ R, x ∈ V, ⊙ ∈ {+,−,∗, /, ∣ ⋅ ∣} (the set of basic real number arithmetic

operators), d̃ ∈ F, x̃ ∈ Ṽ, ⊙̃ ∈ {+̃f , −̃f , ∗̃f , /̃f} (the set of basic floating-point arith-
metic operators) and f ∈ {single,double} denotes the desired precision for the
result. The rounding operator Ff is naturally extended to arithmetic expressions.
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According to the IEEE-754 standard [7], each floating-point operation shall be
computed in exact real arithmetic and then rounded to the nearest float, i.e.,
A⊙̃fA = Ff(A ⊙ A). Since floating-point numbers can be exactly represented
as real numbers, an explicit transformation from floats to real numbers is not
necessary. The set of mixed real-float Boolean expressions B is defined by the
following grammar.

B ∶∶= true ∣ false ∣ B ∧B ∣ B ∨B ∣ ¬B ∣ A < A ∣ A = A,

where A ∈ A.
The input to FPRoCk is a formula φ̃ ∈ B that may contain both real and

floating-point variables and arithmetic operators. Each variable is associated
to a type (real, single precision, or double precision floating-point) and to an
initial range that can be bounded, e.g. [1,10], or unbounded, e.g., [−∞,+∞].
The precision of a mixed precision floating arithmetic operation is automatically
detected and set to the maximum precision of its arguments. Given a mixed
formula φ̃, FPRoCk computes a formula φ over the reals such that φ̃ and φ are
equi-satisfiable. Floating-point expressions are transformed in equivalent real-
valued expressions using the approach in [8] while the real variables and operators
are left unchanged. It is possible to define x ⊙̃ y as follows [8]:

x ⊙̃ y = (
ρ(x⊙y

2exp
⋅ 2p)

2p
) ⋅ 2exp , (2.1)

where p is the precision of the format, exp = max{i ∈ Z ∣ 2i ≤ ∣x⊙y∣}, and ρ ∶ R→
Int is a function implementing the rounding modality. Therefore, given a floating-
point formula φ̃, an equi-satisfiable formula without floating-point operators is
obtained by replacing every occurrence of x ⊙̃ y using Formula (2.1). This is
equivalent to replacing the occurrences of x ⊙̃ y with a new fresh real-valued
variable v and imposing v = x ⊙̃ y. By Equation (2.1), it follows that v ⋅ 2p−exp =
F((x⊙ y) ⋅ 2p−exp). Thus, the final formula φ is obtained as follows:

φ ∶= φ̃[v/x ⊙̃ y] ∧ v ⋅ 2p−exp = ρ((x⊙ y) ⋅ 2p−exp). (2.2)

where φ̃[v/x ⊙̃ y] denotes the Boolean formula φ̃ where all the occurrences of
x ⊙̃ y are replaced by v. The precision p is a constant that depends on the chosen
floating-point format, while exp is an integer representing the exponent of the
binary representation of x ⊙̃ y. In order to search an assignment for the exponent
exp, FPRoCk performs in parallel a sequential and a binary search on the dimen-
sion of x ⊙̃ y, as opposed to the simple sequential search implemented in Realizer.
The implementation of the function ρ depends on the selected rounding-mode
and can be defined by means of floor and ceiling operators (see [8] for details).
Therefore, the transformed formula φ is free of any floating-point operator and
can be solved by any SMT solver that supports the fragment of real/integer
arithmetics handling floors and ceilings. FPRoCk uses three off-the-shelf SMT
solvers as back-end procedures to solve the transformed formula: Mathsat [3],
Z3 [10], and CVC4 [1]. Optionally, the constraint solver Colibri [9] is also avail-
able for use within FPRoCk.
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FPRoCk provides the option to relax the restriction on the minimum ex-
ponent to handle subnormal floats. This solution is sound in the sense that it
preserves the unsatisfiability of the original formula. However, if this option is
used, it is possible that FPRoCk finds an assignment to a float that is not rep-
resentable in the chosen precision, therefore this assignment is not a solution for
the original formula.

3 Integrating FPRoCk in PRECiSA

PRECiSA4 (Program Round-off Error Certifier via Static Analysis) [15] is a
static analyzer based on abstract interpretation [4] that estimates round-off er-
rors of floating-point programs. PRECiSA accepts as input a floating-point pro-
gram and automatically generates a sound over-approximation of the floating-
point round-off error and a proof certificate in the Prototype Verification System
(PVS) [12] ensuring its correctness.

For every possible combination of real and floating-point execution paths,
PRECiSA computes a conditional error bound of the form ⟨η, η̃⟩ ↠ (r, e), where
η is a symbolic path condition over the reals; η̃ is a symbolic path condition over
the floats; r and e are symbolic arithmetic expressions over the reals. Intuitively,
⟨η, η̃⟩ ↠ (r, e) indicates that if the conditions η and η̃ are satisfied, the output
of the program using exact real number arithmetic is r and the round-off error
of the floating-point implementation is bounded by e.

PRECiSA initially computes round-off error estimations in symbolic form so
that the analysis is modular. Given the initial ranges for the input variables,
PRECiSA uses the Kodiak global optimizer [11] to maximize the symbolic error
expression e. Since the analysis collects information about real and floating-
point execution paths, it is possible to consider the error of taking the incorrect
branch compared to the ideal execution using real arithmetic. This happens
when the guard of a conditional statement contains a floating-point expression
whose round-off error makes the actual Boolean value of the guard differ from the
value that would be obtained assuming real arithmetic. When the floating-point
computation diverges from the real one, it is said to be unstable.

Example 1 (Sign). Consider the function sign(x̃) =if x̃ ≥ 0 then 1 else −1. PRE-
CiSA computes a set of four different conditional error bounds: {⟨χr(x̃) ≥ 0, x̃ ≥
0⟩ ↠ (r = 1, e = 0), ⟨χr(x̃) < 0, x̃ < 0⟩ ↠ (r = −1, e = 0), ⟨χr(x̃) ≥ 0, x̃ < 0⟩ ↠ (r =
−1, e = 2), ⟨χr(x̃) < 0, x̃ ≥ 0⟩ ↠ (r = 1, e = 2)}. The function χr ∶ Ṽ→ V associates
to the floating-point variable x̃ a variable x ∈ V representing the real value of
x̃. The first two elements correspond to the cases where real and floating-point
computational flows coincide. In these cases, the error is 0 since the output is
an integer number with no rounding error. The other two elements model the
unstable paths. In these cases, the error is 2, which corresponds to the difference
between the output of the two branches.

4 The PRECiSA distribution is available at https://github.com/nasa/PRECiSA.
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PRECiSA may produce conditional error bounds with unsatisfiable symbolic
conditions (usually unstable), which correspond to execution paths that cannot
take place. The presence of these spurious elements affects the accuracy of the
computed error bound. For instance, in Example 1, if ∣χr(x̃) − x̃∣ ≤ 0, both
unstable cases can be removed, and the overall error would be 0 instead of 2.

Real and floating-point conditions can be checked separately by using SMT
solvers that support real and/or floating-point arithmetic. However, the incon-
sistency often follows from the combination of the real and floating-point con-
ditions. In fact, the floating-point expressions occurring in the conditions are
implicitly related to their real arithmetic counterparts by the rounding-error.
Therefore, besides checking the two conditions separately, it is necessary to
check them in conjunction with a set of constraints relating each arithmetic
expression ẽxpr occurring in the conditions with its real number counterpart
RA(ẽxpr). RA(ẽxpr) is defined by simply replacing in ẽxpr each floating-point
operation with the corresponding one on real numbers and by applying χr to
floating-point variables.

FPRoCk is suitable for solving these constraints thanks to its ability to reason
about mixed real and floating-point formulas. For each conditional error bound
c = ⟨η, η̃⟩t ↠ (r, e) computed by PRECiSA, a formula ψ modeling the informa-
tion contained in the path conditions is passed to FPRoCk. Given a set ι of ranges
for the input variables, for each conditional error bound c = ⟨η, η̃⟩t↠ (r, e) com-
puted by PRECiSA, a formula in the following form is generated and checked
by FPRoCk.

ψ ∶= η ∧ η̃ ∧⋀{∣ẽxpr −RA(ẽxpr)∣ ≤ ε ∣ẽxpr occurs in η̃,

ẽxpr /∈ Ṽ, ẽxpr /∈ F, ε = max(e)∣ι}
(3.1)

The value max(e)∣ι is the round-off error of ẽxpr assuming the input ranges in ι
and it is obtained by maximizing the symbolic error expression e with the Kodiak
global optimizer [11]. If ψ is unsatisfiable, then c is dropped from the solutions
computed by PRECiSA. Otherwise, a counterexample is generated that may
help discovering cases for which the computation is diverging or unsound.

Since FPRoCk is limited to the basic arithmetic operators whereas PRECiSA
provides support for a broader variety of operators including transcendental func-
tions, a sound approximation is needed for converting PRECiSA conditions in a
valid input for FPRoCk. The proposed approach replaces in ψ each floating-point
(respectively real) arithmetic expression with a fresh floating-point (respectively
real) variable. This approach is sound but not complete, therefore it preserves
just the unsatisfiability of the original formula. In other words, if ψ[vi/ẽxpr i]ni=1
is unsatisfiable it follows that ψ is unsatisfiable, but if a solution is found for
ψ[vi/ẽxpr i]ni=1 there is no guarantee that an assignment satisfying ψ exists. This
is enough for the purpose of eliminating spurious conditional bounds since it
is assured that no genuine condition is eliminated. In practice, it is accurate
enough to detect spurious unstable paths.

When a path condition is deemed unsatisfiable by FPRoCk, PRECiSA states
such unsatisfiability in the PVS formal certificate. For simple path conditions,
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PRECiSA PRECiSA+FPRoCk Rosa
error time error time error time

cubicSpline 2.70E+01 0.074 2.70E+01 97.76 2.50E-01 24.101
eps line 2.00E+00 0.02 1.00E+00 48.797 2.00E+00 15.468
jetApprox 1.51E+01 12.768 8.11E+00 263.286 4.97E+00 924.835
linearFit 1.08E+00 0.056 5.42E-01 259.702 3.19E-01 12.384
los 2.00E+00 0.02 1.00E+00 46.173 not supported n/a
quadraticFit 3.68E+00 0.898 3.68E+00 259.818 1.27E-01 82.405
sign 2.00E+00 0.018 1.00E+00 32.12 2.00E+00 4.741
simpleInterpolator 2.25E+02 0.026 1.16E+02 93.813 3.33E+01 6.289
smartRoot 1.75E+00 0.32 1.75E+00 0.624 not supported n/a
styblinski 9.35E+01 1.062 6.66E+01 260.134 6.55E+00 77.031
tau 8.40E+06 0.03 8.00E+06 101.754 8.40E+06 20.672

Table 1. Experimental results for absolute round-off error bounds and execution time
in seconds (best results in bold).

this property can be automatically checked by PVS. Unfortunately, there are
cases where human intervention is required to verify this part of the certificates.

Table 1, compares the original version of PRECiSA with the enhanced version
that uses FPRoCk to detect the unsatisfiable conditions, along with the tool
Rosa [6] which also handles unstable conditionals. All the benchmarks contain
conditionals and are obtained by applying the transformation defined in [16]
to fragments of code from avionics software and from the FPBench library [5].
The transformed program is guaranteed to return either the result of the original
floating-point program, when it can be assured that both its real and its floating-
point flows agree, or a warning when these flows may diverge.

4 Conclusion

This paper presents FPRoCk, a prototype tool for solving mixed real and floating-
point formulas. FPRoCk extends the technique used in Realizer by adding sup-
port for these mixed formulas. The paper illustrates the integration of FPRoCk
into PRECiSA, a static analyzer of floating-point programs, to improve its pre-
cision. Similarly, it can be integrated into other static analyzers, such as FP-
Taylor [14]. The current version of FPRoCk has some limitations in terms of
expressivity and efficiency. It handles the basic arithmetic operators. Support
for other operators, including transcendental functions, is contingent on the ex-
pressive power of the underlying SMT solvers and will be explored in the future.
FPRoCk has been tested on simple expressions with few variables. Finding an
assignment for the exponent of each floating-point variable is still the major
bottleneck of the analysis. This negatively impacts the overall performance of
the prototype especially when the initial ranges for the variables are large. The
use of a branch-and-bound search to divide the state-space may help to mitigate
this problem. In addition, computing the ranges of the intermediate results of
the floating-point operations should also improve the scalability of the proposed
approach.
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